
Invertible Tree Representations Using a Cryptographic Role Embedding Scheme
Coleman Haley1 and Paul Smolensky1, 2

1Johns Hopkins University 2Microsoft Research AI

Introduction
Deep Learning struggles with compositional generalization relative to traditional

methods in symbolic AI. Such generalizations can be facilitated by the use of struc-
tured representations. One method proposed for representing structure while
maintaining the parallel and distributed nature of neural/vector space computa-
tion is the Tensor Product Representation (TPR). TPRs express structure in terms
of variable binding of fillers to roles. In the case of a tree, such a role might
be left-child-of-right-child-of-root, with the filler as the label of that
node.

Tensor Product Representations
Let a symbolic structure be decomposed into N fillers {fi} and roles {ri}. To form

a TPR, we first embed all roles and fillers into vector spaces of dimensions n and d
respectively using the injective functions embr and embf resulting TPR T an then
be expressed as follows:

T =
N∑

i=1
embf (fi)⊗embr(ri) ∈Rd ⊗Rn.

Figure 1: Example of TPR
formation. Role vectors (in
blue) and their correcspond-
ing filler vectors are combined
via the tensor product and
summed.

If embr distributes the role vectors in Rn such that
roles that occur in the same structure are orthogonal
to one another, then we can retrieve the filler fi of ri
by taking f̃i = T ·embr(ri). We call this unbinding ri.
The result of unbinding for rj not in the structure will
be the zero vector. If the role embeddings are not
orthogonal, then the fillers of other roles will intrude
on the result of unbinding proportional to their an-
gle with embr(ri). If the cumulative intrusion is small
enough and we know the embeddings of all possible
fillers, then we may retrieve the correct filler by find-
ing the filler embedding with the highest cosine sim-
ilarity to the result of unbinding, allowing inversion
of the TPR, or reconstruction of the original symbol
structure.
As the dimension of a vector space goes to infinity, random vectors in that

space trend towards orthogonality. While the number of exactly orthogonal vec-
tors in a space is limited by the dimensionality of the space, in sufficiently high-
dimensional spaces it may be possible to approximate orthogonality with ran-
dom vectors. In such a case, we may be able to have more bindings in a TPR than
dimensions in the role space while retaining accuracy. In this work we look at the
properties of embr that use this property.

Some simple cases
Let γ be a constant such that for role-embedding dimension γ, structures with up

to γn bindings can be inverted with error < 1%.
Fully random TPRs – Figure 2(a) (γ = 2):

- Fillers and roles randomly selected, embedded randomly
-Mean intrusion is 0 (destructive interference)
- Lower bound on error

Sentence TPRs – Figure 2(b) (γ = 2):
- Roles are linear position, fillers are sentences from Reuters news corpus.
- Role vectors are random, filler vectors are GoogleNews embeddings
- Inter-filler and Inter-role correlations
- Constructive interference from Zipfian distribution of words

Maximal intrusion – Figure 2(c):
- All roles except the one being unbound are bound to a single filler
- Constructive interference, upper bound on error
- Error proven to be exponentially decreasing in the role dimension

(a) Random TPRs (b) word2vec sentences

(c) Maximal intrusion

Figure 2: Error for simple random TPR cases.

0011010101110101001010100010101001100011010100101010100010…

NP& 10100

NP 010 VP& 100 110

D 01010
N& 10010

V 01100

#the #dog #bit #Kim
SHAKE256

norm

0.274503 0.193874

Box-Muller
0.482094 −0.892045

norm

∈ U ({0,1}3∙8∙n)

∈ N (0;1)n

∈ U (S n−1)

∈ U ([0,1]n)

(0.004837, …)r10100 = −0.019289,

S 1

Figure 3: example of Cryptographic Role Embedding for ternary branching trees.

Cryptographic Roles
Because there are exponentially many possible positions in a tree, we cannot

rely on memoizing random vectors for roles. Thus, we need a deterministic way to
map tree positions to pseudorandom unit vectors. To do this, we rely on a five-step
process (for roles of dimension n):

1. Label the positions in the tree with a bit string
2. Apply the SHAKE256 cryptographic hash to generate 3n‘pseudorandom

bytes
3. Norm 3-byte chunks to obtain random uniform samples on [0,1)
4. Use Box-Muller transform to turn these random samples into random

samples from the standard normal distribution.
5. Vector-norm the concatenation of these bits.

This results in a pseudorandom unit vector which is fully determined by the input
position. The cryptographic hash function plays the key role of approximating ran-
domness while allowing a deterministic mapping. This process is fully general, al-
lowing the representation of arbitrary role schemes that can be encoded as strings.
Figure 3 provides an overview.

Experiments
Cryptographic roles allow the creation of exponentially many roles with low av-

erage dot products, which allows us to abandon prior methods of recursive binding
for tree TPRs and use a simplematrix TPR of fixed dimension. Trees from theMASC
corpus are used, and the label of each position in the tree is bound to that position.
The largest 1% of trees were omitted, resulting in 35,379 trees, with a maximum of
183 nodes. The widest node has 98-ary branching and the deepest tree has depth
29, so in contrast amaximal complete treewould have approximately 4×1085 nodes.

Figure 4: The largest number of nodes (k) for which a
given filler and role dimension combination has error
< 1% for all smaller tree sizes.

Because which roles are
bound are not known at unbind-
ing time, unbinding must pro-
ceed via breadth first search.
The labels of leaf nodes and
rightmost children were anno-
tated with a special symbol in-
dicating that unbinding should
stop there. When this is un-
bound incorrectly, it can lead to
exponential error, making tree
reconstruction particularly chal-
lenging.

Because the reconstructed
tree and the correct treemaynot
contain the same set of nodes,
F1 is used as accuracy metric. Figure 4 shows the maximum number of nodes for
which the F1 is at least .99 when unbinding trees from MASC, with the filler and
role dimension varied. Role dimension seems to have a stronger effect than filler
dimension (likely due to the orthogonality requirements). For sufficiently large filler
dimension, γ ranges from 0.69 to 1, similar to truly orthogonal vectors. We find
for trees of size < 150, we may use role dimension 200 and filler dimension 150
to represent them with a 30,000 dimensional TPR. Previous methods relying on
orthogonality and recursion would require 8.6×1057-dimensional roles.


